Autonomous Observations of the Ocean Biological Carbon Pump


J. K. B. Bishop

Oceanography 22(2), 183-192, 2009

Abstract. Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate spatial and temporal scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost, fully autonomous ocean profiling Carbon Explorers, which demonstrated that year-round, real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a particulate inorganic carbon (PIC) sensor suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore-based laboratory analysis is now possible to full ocean depth in real time using a 0.2-W sensor operating at 24 Hz. NOPP developments further spawned US Department of Energy support to develop the Carbon Flux Explorer, a free vehicle capable of following hourly variations of PIC and POC sedimentation from the near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real-time, low-cost carbon observations that are of fundamental value to carbon prediction and that, when further developed, will lead to a fully enhanced global carbon observatory capable of real-time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

Return to ...

Ocean Biogeochemical Processes Home Page